Математическое моделирование взаимосвязей упругих свойств и характеристик пустотного пространства для обоснования методики определения хрупкости породколлекторов

> Дубиня Никита Владиславович Баюк Ирина Олеговна

> > Dubinya.NV@gmail.com ibayuk@yandex.ru

План доклада

- 1. Понятие хрупкости. Различные определения индекса хрупкости. Сходство и различие результатов.
- 2. Определение индекса хрупкости на основе петроупругого моделирования (rock physics).
- 3. Особенности поведения индекса хрупкости в анизотропных породах.

Введение

- «Хрупкость свойство материала разрушаться без образования заметных пластических деформаций. Является противоположным свойству пластичности»
- В задачах геомеханики **индекс хрупкости** может быть использован для выбора интервала для проведения ГРП
- В отличие от упругих модулей, прочностных свойств у **индекса хрупкости** нет единого строгого математического определения
- Существует проблема выбора «правильного» определения индекса хрупкости для конкретного объекта

Основные подходы

- 1. Mineral-based Brittleness Index (MBI) расчет индекса хрупкости породы по соотношению эмпирически установленных индексов хрупкостей минералов. Пример: MBI = Quartz / (Quartz + Carbonate + Clay) [Jarvie et al., 2007]. Все коэффициенты равным массовым долям минералов;
- 2. Log-based Brittleness Index (LBI) расчет индекса хрупкости по данным геофизических исследований скважин. Пример: LBI = α·NPHI + β [Jin et al., 2014]. NPHI нейтронная пористость, α и β эмпирические параметры для породы;
- 3. Elastic-based Brittleness Index (EBI) расчет индекса хрупкости по значениям упругих модулей. Пример (очень популярный): EBI = ($E_{\text{stat,norm}} + v_{\text{stat, norm}}$)/2 [Rickman et al., 2008]. $E_{\text{stat,norm}}$, $v_{\text{stat,norm}}$ нормированные упругие модули.

Классификация индексов хрупкости

Классификация по виду использующихся данных (Mews et al., 2019)

Индекс хрупкости, основанный на лабораторных испытаниях на прессе

- test-based index (TBI)

 \mathbf{B}^{1}

Индекс хрупкости, основанный на минеральном составе

WITTET AT-DASEU DITUTETTESS ITTUEX (WIDT)												
Correlation for MBI	Formation	Age	Lithology	Φ (%)	TOC (%)	Reference						
Q Q+Carb+Cly	Barnett	Carb.	Shale bounded by limestone	6	1–3	Jarvie et al.						
$\frac{Q + Dol}{Q + D + Cal + Cly + TOC}$	Barnett	Carb.	Shale bounded by limestone	6	1–3	Wang and Gale						
Q+Cal+D Q+Cal+D+Cly+TOC	Neuquén Basin, Argentina	Jur.	Mudstones	8	2.5-3.5	Glorioso and Rattia						
$\frac{(abM1+abM2)}{(abM1+abM2+abM3)}$	Haynes-ville	Jur.	Calcite to silica-rich shale	8	3–6	Buller et al.						
Q+F+M+Carb tot	Barnett	Carb.	Shale bounded by limestone	6	1–3	Jin et al.						
$ \begin{pmatrix} 1.09 \times \\ \frac{Q+F+P}{Q+F+P+Cal+D+Cly} \end{pmatrix} + \begin{pmatrix} \frac{1}{8.8} \end{pmatrix} $	Wolf-camp	Carb Perm.	Shale, minor limestone	10	2.3	Alzahabi et al.						
$\frac{Q+F+P}{Q+F+P+(0.5\times(Cal+D))+PHIT}$	Shales in Europe and Barnett	Camb. – Jur.	Shale bounded by limestone	0.6–11	15	Rybacki et al.						

Mineral-based Brittleness Index (MBI)

Mews K.S., Alhubail M.M., Barati R.Gh., 2019. doi:10.3390/geosciences9070319

Индекс хрупкости, основанный на данных ГИС (эмпирические зависимости)

Log-based Brittleness Index (LBI)

Mews K.S., Alhubail M.M., Barati R.Gh., 2019. doi:10.3390/geosciences9070319

Jin X., Shah S., Truax J., Roegiers J.-C., 2014. doi:10.2118/170972-MS

Индекс хрупкости, основанный на данных об упругих свойствах **Elastic-based Brittleness Index (EBI)**

Два варианта: анализ динамики и кривых нагружения

Вариант 1 аналогичен LBI (в таблице: $FI = EBI_{Rickman et al..norm}$)

	Correlation	Formation	Age	Lithology	Φ (%)	TOC (%)	Reference				
_	$\text{EBI} = \frac{\text{E}_{\text{stat,norm}} + \nu_{\text{stat,norm}}}{2}$	Barnett	Carb.	Shale bounded by limestone	6	1–3	Rickmann et al.				
	$EBI = E_{dyn} \times RHOB$	Western Canadian Basin	Jur.	Shale and Sandstone	5-10	-	Sharma and Chopra				
	$EBI = \frac{E_{dyn} \times RHOB}{v_{dyn}}$	Liahoe, China	Paleogene	Shale		2.39	Sun et al.				
GC –	$EBI = \frac{E}{\lambda}$	-	-	Shale and Sandstone	<10	-	Chen et al.				
критическа я скорость	$\text{KIC} = 0.313 + 0.027 \times \text{E}_{\text{dyn}}$	Woodford	Dev.	Shale bounded by limestone	0.5-3	5.01-14.81	Jin et al.				
высвобожд ения	$\begin{array}{c} \text{GC} = \\ \left(1 - \left(\nu_{\text{dyn}}\right)^2\right) \times \left(\frac{\text{KIC}^2}{\text{E}_{\text{dyn}}}\right) \times 10^3 \end{array}$	Barnett	Carb.	Shale bounded by limestone	6	1–3	Jin et al.				
энергии	$EBI = \frac{FI + GC_{norm}}{2}$	Barnett	Carb.	Shale, bounded by limestone	6	1–3	Jin et al.				
КІС - трещин- ностойкость	$EBI = \frac{FI + KIC_{norm}}{2}$	Barnett	Carb.	Shale bounded by limestone	6	1–3	Jin et al.				
FI –	$EBI = \frac{FI + E_{dyn,norm}}{2}$	Barnett	Carb.	Shale bounded by limestone	6	1–3	Jin et al.				
frackability — index	Mews K.S., Alhubail M.M., Barati R.Gh., 2019. doi:10.3390/geosciences9070319										

Энергетический подход

Имеет теоретическое обоснование: нелинейность кривой напряжениедеформация обусловлена пластическим деформированием и затратами энергии на хрупкое развитие трещин (акустическая эмиссия) образование в среде дополнительной свободной поверхности

Zhang J., Ai C., Li Y.-W., Che M.-G., Gao R., Zeng J. 2018. doi:10.1007/s00603-018-1535-9

Сравнение индексов хрупкости

Mews K.S., Alhubail M.M., Barati R.Gh., 2019. doi:10.3390/geosciences9070319

Сравнение индексов хрупкости

Использование двух разных МВІ и одного LBI на одних данных.

Mews K.S., Alhubail M.M., Barati R.Gh., 2019. doi:10.3390/geosciences9070319

Взаимосвязь хрупкости и внутреннего строения породыколлектора на основе подходов Rock Physics

Модель эффективной среды, расчет эффективной хрупкости

Модельная среда – карбонатная изотропная матрица со случайно ориентированными пустотами (форма – эллипсоиды вращения), заполненными пластовым флюидом Параметры модели – аспектное отношение пустот, трещинная пористость

Свойства матрицы: Vp = 6.54 км/с, Vp = 3.35 км/с,, Rho = 2.71 г/см³. Свойства флюида: Vp = 1.6 км/с, Rho = 1.1 г/см³.

Аспектное отношение (AR) изменяется от 0.0001 до 0.01. Трещинная пористость варьирует от 0 до 2 %.

Эффективный индекс хрупкости

Расчет индексов хрупкости по эффективным модулям

Правила нормировки

Индексы хрупкости падают с ростом пористости для фиксированного аспектного отношения (относительного раскрытия пустот)

Для фиксированной пористости индексы хрупкости растут с ростом относительного раскрытия пустот

Высокие значения индексов хрупкости коррелируют с высокими значениями скоростей

Эффективный индекс хрупкости Расчет индексов хрупкости по эффективным модулям

Расчет трещинностойкости и критической скорости высвобождения энергии по результатам петроупругого моделирования

Трещинностойкость, МПа*м^{0.5}

Критическая скорость высвобождения энергии, Дж/м²

Энергетический баланс

Учет особенностей затрат свободной энергии – ключ к пониманию

Энергия при неупругом деформировании тратится на растрескивание и развитие Резкий рост свободной поверхности при достижении предела прочности – признак

18000

16000

12000

10000

8000

6000

4000

2000

Å

Поведение индекса хрупкости по LBI3 (по Рикману) в трещинных породах

Влияние плотности трещин на индексы хрупкости

Особенности поведения индекса хрупкости в анизотропных породах

Модель: кальцитовая матрица с ориентированными трещинами, насыщенными пластовым флюидом

Свойства матрицы: Vp = 6.54 км/с, Vs = 3.35 км/с, Rho = 2.71 г/см³. Свойства флюида: Vp = 1.6 км/с, Rho = 1.1 г/см³.

Аспектное отношение (AR) изменяется от 0.0001 до 0.01. Трещинная пористость варьирует от 0 до 2 %. Общая пористость варьирует от 0 до 40%.

Модель: кальцитовая матрица с ориентированными трещинами, насыщенными пластовым флюидом

Модуль Юнга (ГПа)

Оси 1 и 2 расположены в плоскости трещин, ось 3 – перпендикулярна плоскости трещин.

Модель: кальцитовая матрица с ориентированными трещинами, насыщенными пластовым флюидом

Коэффициент Пуассона

Кальцитовая матрица с ориентированными трещинами, насыщенными пластовым флюидом BI = E11/NU31

Для метода Рикмана максимумы и минимумы взяты для каждого направления: E11_min, E11_max, NU12_min, NU12_max etc.

Кальцитовая матрица с ориентированными трещинами, насыщенными пластовым флюидом

Результат по Рикману выглядит странно: известно, что трещины практически не меняют свойства породы в направлении плоскости трещин (индексы 1 и 2), однако минимальная изменчивость индекса наблюдается для коэффициента Рикмана (E33, NU13)

Модель: кальцитовая матрица с горизонтальными линзами керогена

Свойства матрицы: Vp = 6.54 км/с, Vs = 3.35 км/с, Rho = 2.71 г/см³. Свойства керогена: Vp = 2.19 км/с, Vs = 1.12 км/с, Rho = 1.28 г/см³.

Аспектное отношение (AR) изменяется от 0.0001 до 0.01. Содержание керогена варьирует от 0 до 40 %.

Модуль Юнга

Для метода Рикмана максимумы и минимумы взяты для каждого направления: E11_min, E11_max, NU12_min, NU12_max etc.

BI = E11/NU21

Индекс, равный отношению модуля Юнга к коэффициенту Пуассона, от направления практически не зависит!!!

Rickman (E11, NU31) = LBI3*100% 64 -0.5 -28 60 48 g 56 -1 -48 -1.5 -40 -2 -36 32 28

56 52 Максимальная 48 44 ИЗМЕНЧИВОСТЬ 40 36 32 28 24

20

16

12

Rickman (E11, NU21)=LBI3*100%

Минимальная изменчивость (ожидаемая!)

33

Для метода Рикмана максимумы и минимумы взяты для каждого направления: E11_min, E11_max, NU12_min, NU12_max etc.

Поведение различных индексов (отношения модулей и Рикмана) разное!!!

Выводы

- 1. При наличии нескольких десятков определений индекса хрупкости, необходимо выбирать то, которое даёт корректные результаты для **данных** пород при использовании **имеющейся** информации.
- 2. Для корректного выбора индекса хрупкости необходимо учитывать тип породы, особенности её внутренней структуры и минеральный состав.
- Результаты определение индекса хрупкости не должно противоречить физическому смыслу. В частности, они должны находиться в согласии с энергетическими законами неупругого деформирования. В этом случае противоречия между индексами хрупкости, рассчитанными по данным ГИС и определенными по результатам лабораторных исследований керна, должны быть минимальны.
- 4. Определение индекса хрупкости для анизотропных пород, которыми являются большинство нетрадиционных низкопроницаемых коллекторов УВ, требует особого внимания. Необходимо учитывать направление, для которого индекс хрупкости определяется.